Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
1.
Food Chem ; 450: 139331, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621310

RESUMO

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.

2.
Afr J Lab Med ; 13(1): 2252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629086

RESUMO

Background: Fosfomycin treatment of urinary tract infections is increasingly attractive due to escalating antibiotic resistance rates among urinary pathogens. Standard antibiotic susceptibility testing methods perform poorly for fosfomycin as there is poor correlation between susceptibility results and clinical outcomes in urinary pathogens other than Escherichia coli. Objective: We evaluated the performance of fosfomycin susceptibility testing in E. coli and Klebsiella pneumoniae to determine whether fosfomycin susceptibility is associated with molecular resistance mechanisms. Methods: Forty-six each of E. coli and K. pneumoniae clinical isolates were obtained from a tertiary hospital in South Africa, from 01 June 2017 to 31 January 2018. Agar dilution, disk diffusion, and gradient diffusion were performed and interpreted using the Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines. Molecular resistance mechanisms were identified by whole genome sequence analysis. Results: Disk diffusion and gradient diffusion were accurate alternatives for fosfomycin susceptibility testing in E. coli (98% categorical agreement), but not in K. pneumoniae (47% categorical agreement). All E. coli isolates contained at least one resistance mechanism, but only one isolate with a fosA gene was resistant. In K. pneumoniae, 63% (29/46) and 70% (32/46) of isolates were susceptible to fosfomycin, using Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing breakpoints, respectively, despite all isolates containing a fosA gene and a uhpT mutation. Conclusion: A better understanding of fosfomycin susceptibility and improved antibiotic susceptibility testing tools could improve diagnostic capability and clinical guidelines for fosfomycin treatment of urinary tract infections. What this study adds: This study highlights the importance of adhering to interpretive guidelines when performing antimicrobial susceptibility testing and the need for simplified, accurate and standardised susceptibility testing methodology and interpretation for fosfomycin in Enterobacterales organisms.

3.
Clin Infect Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626241

RESUMO

Amoxicillin-clavulanate (AMC) is among the most frequently prescribed antibiotics globally. It has broad antibacterial activity against gram-positive, gram-negative, and anaerobic bacteria, and has been utilized to treat infections caused by a broad range of pathogens. AMC breakpoints against Enterobacterales were initially set in the 1980s but since then increases in antibiotic resistance, advances in pharmacokinetic (PK)/pharmacodynamic (PD) analyses, and publication of additional clinical data prompted a reassessment by the Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antimicrobial Susceptibility Testing. Based on this contemporary reappraisal, the CLSI retained the Enterobacterales breakpoints but revised comments regarding dosing associated with use of the AMC breakpoints in the 2022 supplement of M100. This viewpoint provides insight into the CLSI breakpoint reevaluation process and summarizes the data and rationale used to support these revisions to the AMC Enterobacterales breakpoint.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38561143

RESUMO

OBJECTIVE: This study aims to estimate the overall in vitro activity of bedaquiline (BDQ) against clinical isolates of Mycobacterium abscessus complex (MABS) and Mycobacterium avium complex (MAC), considering BDQ as a repurposed drug for non-tuberculous mycobacteria (NTM) infections. METHODS: We conducted a systematic review of publications in PubMed/ MEDLINE, Web of Science, and Embase up to April 15, 2023. Studies were included if they followed the Clinical and Laboratory Standards Institute (CLSI) criteria for drug susceptibility testing (DST). Using a random effects model, we assessed the overall in vitro BDQ resistance rate in clinical isolates of MABS and MAC. Sources of heterogeneity were analyzed using Cochran's Q and the I2 statistic. All analyses were performed using CMA V3.0. RESULTS: A total of 24 publications (19 reports for MABS and 11 for MAC) were included. Using 1 µg/mL and 2 µg/mL as the breakpoint for BDQ resistance, the pooled rates of in vitro BDQ resistance in clinical isolates of MABS were found to be 1.8% (95% confidence interval [CI], 0.7-4.6%) and 1.7% (95% CI, 0.6-4.4%), respectively. In the case of MAC, the pooled rates were 1.7% (95% CI, 0.4-6.9%) and 1.6% (95% CI, 0.4-6.8%) for 1 µg/mL and 2 µg/mL, respectively. CONCLUSION: This study reports the prevalence of BDQ resistance in clinical isolates of MABS and MAC. The findings suggest that BDQ holds potential as a repurposed drug for treating MABS and MAC infections.

6.
J Infect Chemother ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570137

RESUMO

We aimed to assess the accuracy of BD Phoenix for determining carbapenem susceptibility because we observed a decline in carbapenemase susceptibility rate from the biannual cumulative data, after we transitioned to the BD Phoenix form Vitek 2 system. Between October 2021 and May 2022, we collected 82 non-duplicated Enterobacterales showing non-susceptible to at least one of the three carbapenems by BD Phoenix. We performed the broth microdilution (BMD) and disk diffusion (DD) according to the CLSI guideline. Compared to BMD, the categorical agreements for ertapenem (ERT), imipenem (IPM) and meropenem (MEPM) was 58.8%, 56.8% and 91.5% for BD Phoenix and it was 85.4%, 89.0%, and 97.6%, respectively, for DD (p value; 0.0001 for ERT and IPM, p value; 0.17 for MEPM). The major errors/minor errors for ERT, IPM, and MEPM were 14.0%/31.7%, 2.94%/40.7%, and 2.56%/6.10%, respectively for BD Phoenix, compared to 0%/14.6%, 0%/9.8%, and 0%/2.5%, for DD. While errors in the BD Phoenix showed tendency towards resistance, those in DD displayed no tendency towards either resistance or susceptibility. With DD, 21 out of the 27 isolates showing susceptible/intermediate/susceptible pattern (ERT/IPM/MEPM) and 13 out of the 16 isolates showing intermediate/susceptible/susceptible pattern (ERT/IPM/MEPM), were correctly categorized by DD. However, for 22 isolates showing resistant/susceptible/susceptible pattern (ERT/IPM/MEPM), only 13 isolates were correctly categorized by DD. In conclusion, to mitigate the risk of overcalling carbapenem non-susceptibility with BD Phoenix, it will be helpful to perform a complementary test using DD and to provide comments on the DD results to clinicians.

7.
Clin Infect Dis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573057

RESUMO

Antimicrobial resistance (AMR) affects 2.8 million Americans annually. AMR is identified through antimicrobial susceptibility testing (AST), but current and proposed regulatory policies from the United States Food and Drug Administration (FDA) jeopardize the future availability of AST for many microorganisms. Devices that perform AST must be cleared by the FDA using their susceptibility test interpretive criteria, also known as breakpoints. The FDA list of breakpoints is relatively short. Today, laboratories supplement FDA breakpoints using breakpoints published by the Clinical and Laboratory Standards Institute, using legacy devices and laboratory-developed tests (LDTs). FDA proposes to regulate LDTs, and with no FDA breakpoints for many drug-bug combinations, the risk is loss of AST for key clinical indications and stifling innovation in technology development. Effective solutions require collaboration between manufacturers, infectious diseases clinicians, pharmacists, laboratories, and the FDA.

8.
APMIS ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565324

RESUMO

Antibiotic susceptibility testing (AST) by agar diffusion has been repeatedly standardized and, in most cases, gives results which predict clinical success when antibiotic treatment is based on such results. The formation of the inhibition zone is due to a transition from planktonic to biofilm mode of growth. The kinetics of the interaction of antibiotics with bacteria is similar during AST by agar diffusion and during administration of antibiotics to the patients. However, the Mueller-Hinton agar (MHA) recommended for AST agar diffusion test is fundamentally different from the composition of the interstitial fluid in the human body where the infections take place and human cells do not thrive in MH media. Use of RPMI 1640 medium designed for growth of eucaryotic cells for AST of Pseudomonas aeruginosa against azithromycin results in lower minimal inhibitory concentration, compared to results obtained by MHA. The reason is that the RPMI 1640 medium increases uptake and reduces efflux of azithromycin compared to MHA. During treatment of cystic fibrosis patients with azithromycin, mutational resistance occur which is not detected by AST with MHA. Whether this is the case with other antibiotics and bacteria is not known but it is of clinical importance to be studied.

9.
Indian J Crit Care Med ; 28(4): 387-392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585311

RESUMO

Background: Presently, many laboratories are equipped with automated system for antimicrobial susceptibility testing (AST) for minimum inhibitory concentration-based reporting which enables the clinician to choose the right antimicrobial for timely treatment of sepsis. The study aimed to assess performance of direct AST from blood culture positive broth using automated AST system for accuracy and time taken to release the report. Materials and methods: The present study conducted in a 25-bedded ICU in North India for 12 months. Single morphotype of bacteria on gram stain from positively flagged blood culture bottles were included, which was directly identified (using an in-house protocol) with MALDI-TOF-MS from positive blood culture broths. DAST was carried out from 200 such blood culture broths and results were compared with reference AST (RAST) which was also done using VITEK-2 using overnight grown bacterial colonies as per standard protocol. Results: Among 60 isolates of Enterobacterales, 99% categorical agreement for both E. coli and K. pneumoniae observed by two methods were tested for AST. Among non-fermenters, Pseudomonas aeruginosa showed a categorical agreement of 99.6%, as compared with Acinetobacter spp. and exotic GNBs, which showed 95-96% agreement. A significant difference of 18-24 hours was noted in time to release the report between DAST and RAST, for GNB and GPC both. Conclusion: Direct AST from positive flagged blood culture bottles can significantly reduce the time to release the bacterial susceptibility report by up to 24 hours, at the same time maintaining the accuracy. How to cite this article: Singh V, Agarwal J, Nath SS, Sharma A. Evaluation of Direct Antimicrobial Susceptibility Testing from Positive Flagged Blood Cultures in Sepsis Patients. Indian J Crit Care Med 2024;28(4):387-392.

10.
Cureus ; 16(3): e55889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595874

RESUMO

Mycobacterium porcinum is a nontuberculous mycobacteria (NTM) recently identified to cause human infection. Correct speciation of NTMs can be difficult and result in misdiagnosis and delayed treatment. Because of the paucity of the literature, there is a lack of awareness of the possibility of serious infections caused by M. porcinum. Although severe infections tend to occur in individuals with certain risk factors, the primary being an immunocompromised state, our case illustrates that it can also be possible in non-severely immunocompromised individuals. A 65-year-old male with a medical history of diabetes mellitus (DM), end-stage renal disease (ESRD) on hemodialysis (HD), congestive heart failure (CHF), and chronic obstructive pulmonary disease (COPD) was admitted to the emergency room due to a laceration on his right lower leg following a fall. He reported shortness of breath but denied other respiratory symptoms. On examination, he showed signs of infection and increased oxygen requirement compared to baseline. Blood culture was positive for acid-fast bacilli (AFB), initially reported as M. avium complex (MAC) and later confirmed as M. porcinum through gene sequencing and morphology analysis. Interval blood cultures taken a week later confirmed true M. porcinum bacteremia. Treatment initially involved intravenous antibiotics- imipenem and ciprofloxacin before transitioning to oral linezolid and ciprofloxacin based on sensitivities. Following 10 days of antibiotic therapy, subsequent blood cultures returned negative, and treatment with oral antibiotics was advised, with continued outpatient follow-up with infectious disease in two weeks. M. porcinum, typically considered a contaminant in healthy individuals, was identified as the causative agent of a disseminated infection in a non-severely immunocompromised patient. This case underscores the importance of accurately identifying the specific mycobacterial species, confirming true infection, and conducting antibiotic susceptibility testing due to the distinct antibiotic susceptibility profile of M. porcinum compared to other NTM like MAC.

11.
BMC Genomics ; 25(1): 387, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643090

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS: We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS: GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Micobactérias não Tuberculosas , Resistência a Medicamentos , Internet
12.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 205-207, Abr. 2024. tab
Artigo em Inglês | IBECS | ID: ibc-232176

RESUMO

Introduction: Early and adequate treatment of bloodstream infections decreases patient morbidity and mortality. The objective is to develop a preliminary method for rapid antibiotic susceptibility testing (RAST) in enterobacteria with inducible chromosomal AmpC. Methods: RAST was performed directly on spiked blood cultures of 49 enterobacteria with inducible chromosomal AmpC. Results were read at 4, 6 and 8h of incubation. Commercial broth microdilution was considered the reference method. Disks of 10 antibiotics were evaluated. Results: The proportion of readable tests at 4h was 85%. All RAST could be read at 6 and 8h. For most antibiotics, the S or R result at 4, 6 and 8h was greater than 80% after tentative breakpoints were established and Area of Technical Uncertainty was defined. Conclusions: This preliminary method seems to be of practical use, although it should be extended to adjust the breakpoints and differentiate them by species.(AU)


Introducción: El tratamiento precoz y adecuado de las bacteriemias disminuye la morbilidad y mortalidad de los pacientes. El objetivo es desarrollar un método preliminar de pruebas rápidas de sensibilidad antibiótica (PRSA) en enterobacterias con AmpC cromosómica inducible. Métodos: Las PRSA se realizaron directamente de hemocultivos simulados positivos para 49 enterobacterias con AmpC cromosómica inducible. Los resultados se leyeron a las 4, 6 y 8 horas de incubación. La microdilución en caldo comercial se consideró el método de referencia. Se evaluaron discos de 10 antibióticos. Resultados: La proporción de pruebas legibles a las 4 horas fue del 85%. Todas las PRSA pudieron leerse a las 6 y 8 horas. Para la mayoría de los antibióticos, el resultado S o R a las 4, 6 y 8 horas fue superior al 80%, después de que se establecieran puntos de corte provisionales y se definiera el área de incertidumbre técnica. Conclusiones: Este método preliminar parece ser de utilidad práctica, aunque debería ampliarse para ajustar los puntos de corte y diferenciar por especies.(AU)


Assuntos
Humanos , Masculino , Feminino , Antibacterianos , Testes de Sensibilidade Microbiana , Enterobacteriaceae , Antibacterianos/farmacologia , beta-Lactamases
13.
Artigo em Inglês | MEDLINE | ID: mdl-38638045

RESUMO

BACKGROUND: Sepsis is a major health problem worldwide and is associated with high morbidity and mortality with every hour delay in initiation of therapy. A conventional method of blood culture and Antimicrobial Susceptibility Testing (AST) takes around 48-72 hours. Empirical antibiotics need to be administered until the sensitivity report is made available. It has been estimated that 20-50% of the empirical antibiotics are inappropriate, resulting in prolonged hospital stays, adverse effects, and emergence of drug resistance. Additionally, this also puts an extra financial burden on both the patients and healthcare settings. Performing direct Antimicrobial Sensitivity Testing (dAST) is an important tool to reduce turn-around time (TAT) by at least 18-24 hours, thus reducing morbidity and mortality among critically ill patients. METHODS: Direct AST (dAST) was performed from the positively flagged blood culture bottles received between December, 2021 to May, 2022 from Intensive Care Units (ICUs) on MuellerHinton Agar (MHA) using four drops of withdrawn blood. dAST was performed for six drugs: Ceftriaxone-30 µg (CTR), Piperacillin/Tazobactam-100/10 µg (PIT), Meropenem-10 µg (MRP), Ciprofloxacin-5 µg (CIP), Aztreonam-30 µg (AT), and Colistin (CL). The zone of inhibition was interpreted as per CLSI M100 ed32, 2022 guidelines. A parallel conventional method was also performed to examine for categorical agreement and disagreement. Identification was carried out using MALDI-TOF MS from the colonies that appeared on the dAST plate on the subsequent day. RESULTS: A total of 162 positively flagged blood culture bottles were included in the study. The majority of the Gram-negative organisms were from Enterobacterales (n=109), followed by Acinetobacter spp. (n=28) and Pseudomonas aeruginosa (n=25). Out of the 972 isolate-antimicrobial combinations, overall Categorical Agreement (CA) was seen in 936 (96.3%), whereas disagreement was observed in 36 with minor error (mE) in 21 (2.2%), major error (ME) in 7 (0.7%), and very major error (VME) in 8 (0.8%) when compared to the routine method. Categorical agreement (CA) of > 99% was seen in ceftriaxone (CTR) and ciprofloxacin (CIP). In comparison, the lowest CA was observed with meropenem (MRP) at 92%. Colistin dAST was performed using the E-strip method, and the result obtained was highly convincing, with an overall disagreement of only 1.2%. CONCLUSION: Rapid dAST from positively flagged blood culture bottles proved to significantly reduce the TAT from the time of sample collection to the first availability of antimicrobial susceptibility report with excellent categorical agreement of > 95% using the conventional disc diffusion method. Results obtained were within the acceptance criteria set by U. S. Food and Drug Administration (FDA) guidelines of > 90% categorical agreement for a new method. We were able to obtain excellent concordance for colistin using the E-strip method. Performing dAST not only saves a "day", but its proper implementation would save a "life".

14.
Cureus ; 16(3): e55405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562346

RESUMO

Meningitis caused by Salmonella enterica can be a fatal condition that is more common in low- and middle-income countries and uncommon in infants. This case of a 2-month-old male infant reported Salmonella meningitis symptoms, such as fever, irritability, altered sensorium, and diarrhoea. Clinical examination revealed bulging anterior fontanelles, dehydration, and sunken eyes. Screening for normal hearing, cranial ultrasound, and magnetic resonance imaging (MRI) revealed no brain abnormalities. A cerebrospinal fluid (CSF) culture revealed gram-negative Salmonella enterica bacilli. Treatment with meropenem and ampicillin was initiated after antibiotic susceptibility testing showed sensitivity. The patient's cerebrospinal fluid parameters and bacterial growth improved after antibiotic therapy. Two weeks later, the baby was neurologically healthy and discharged. Paediatricians should be aware that Salmonella enterica can cause meningitis in children with non-specific symptoms.

15.
Helicobacter ; 29(2): e13060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38581134

RESUMO

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Metronidazol/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Levofloxacino/farmacologia , Equador , Antibacterianos/farmacologia , Amoxicilina/farmacologia , Tetraciclina/uso terapêutico , Tetraciclina/farmacologia , Quimioterapia Combinada
16.
Expert Opin Pharmacother ; : 1-9, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623728

RESUMO

INTRODUCTION: The reports of resistance to antifungal agents used for treating onychomycosis and other superficial fungal infections are increasing. This rise in antifungal resistance poses a public health challenge that requires attention. AREAS COVERED: This review explores the prevalence of dermatophytes and the current relationship between dermatophyte species, their minimum inhibitory concentrations (MICs) for terbinafine (an allylamine) and itraconazole (an azole), and various mutations prevalent in these species. The most frequently isolated dermatophyte associated with resistance in patients with onychomycosis and dermatophytosis was T. mentagrophytes. However, T. indotineae emerged as the most prevalent isolate with mutations in the SQLE gene, exhibiting the highest MIC of 8 µg/ml for terbinafine and MICs of 8 µg/ml and ≥ 32 µg/ml for itraconazole.Overall, the most prevalent SQLE mutations were Phe397Leu, Leu393Phe, Ala448Thr, Phe397Leu/Ala448Thr, and Lys276Asn/Leu415Phe (relatively recent). EXPERT OPINION: Managing dermatophyte infections requires a personalized approach. A detailed history should be obtained including details of travel, home and occupational exposure, and clinical examination of the skin, nails and other body systems. Relevant testing includes mycological examination (traditional and molecular). Additional testing, where available, includes MIC evaluation and detection of SQLE mutations. In case of suspected terbinafine resistance, itraconazole or voriconazole (less commonly) should be considered.

17.
Enferm Infecc Microbiol Clin (Engl Ed) ; 42(4): 205-207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575276

RESUMO

INTRODUCTION: Early and adequate treatment of bloodstream infections decreases patient morbidity and mortality. The objective is to develop a preliminary method for rapid antibiotic susceptibility testing (RAST) in enterobacteria with inducible chromosomal AmpC. METHODS: RAST was performed directly on spiked blood cultures of 49 enterobacteria with inducible chromosomal AmpC. Results were read at 4, 6 and 8h of incubation. Commercial broth microdilution was considered the reference method. Disks of 10 antibiotics were evaluated. RESULTS: The proportion of readable tests at 4h was 85%. All RAST could be read at 6 and 8h. For most antibiotics, the S or R result at 4, 6 and 8h was greater than 80% after tentative breakpoints were established and Area of Technical Uncertainty was defined. CONCLUSIONS: This preliminary method seems to be of practical use, although it should be extended to adjust the breakpoints and differentiate them by species.


Assuntos
Hemocultura , Enterobacteriaceae , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Antibacterianos/farmacologia
18.
Ann Clin Microbiol Antimicrob ; 23(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449006

RESUMO

BACKGROUND: The aim of this study was to investigate the clinical features of Nocardia infections, antibiotic resistance profile, choice of antibiotics and treatment outcome, among others. In addition, the study compared the clinical and microbiological characteristics of nocardiosis in bronchiectasis patients and non-bronchiectasis patients. METHODS: Detailed clinical data were collected from the medical records of 71 non-duplicate nocardiosis patients from 2017 to 2023 at a tertiary hospital in Zhengzhou, China. Nocardia isolates were identified to the species level using MALDI-TOF MS and 16S rRNA PCR sequencing. Clinical data were collected from medical records, and drug susceptibility was determined using the broth microdilution method. RESULTS: Of the 71 cases of nocardiosis, 70 (98.6%) were diagnosed as pulmonary infections with common underlying diseases including bronchiectasis, tuberculosis, diabetes mellitus and chronic obstructive pulmonary disease (COPD). Thirteen different strains were found in 71 isolates, the most common of which were N. farcinica (26.8%) and N. cyriacigeorgica (18.3%). All Nocardia strains were 100% susceptible to both TMP-SMX and linezolid, and different Nocardia species showed different patterns of drug susceptibility in vitro. Pulmonary nocardiosis is prone to comorbidities such as bronchiectasis, diabetes mellitus, COPD, etc., and Nocardia is also frequently accompanied by co-infection of the body with pathogens such as Mycobacterium and Aspergillus spp. Sixty-one patients underwent a detailed treatment regimen, of whom 32 (52.5%) received single or multi-drug therapy based on TMP-SMX. Bronchiectasis was associated with a higher frequency of Nocardia infections, and there were significant differences between the bronchiectasis and non-bronchiectasis groups in terms of age distribution, clinical characteristics, identification of Nocardia species, and antibiotic susceptibility (P < 0.05). CONCLUSIONS: Our study contributes to the understanding of the species diversity of Nocardia isolates in Henan, China, and the clinical characteristics of patients with pulmonary nocardiosis infections. Clinical and microbiologic differences between patients with and without bronchiectasis. These findings will contribute to the early diagnosis and treatment of patients.


Assuntos
Bronquiectasia , Diabetes Mellitus , Nocardiose , Nocardia , Doença Pulmonar Obstrutiva Crônica , Humanos , Nocardia/genética , RNA Ribossômico 16S/genética , Combinação Trimetoprima e Sulfametoxazol , Nocardiose/tratamento farmacológico , China , Bronquiectasia/tratamento farmacológico , Resistência a Medicamentos
19.
J Health Popul Nutr ; 43(1): 39, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449053

RESUMO

Bacterial drug resistance monitoring in hospitals is a crucial aspect of healthcare management and a growing concern worldwide. In this study, we analysed the bacterial drug resistance surveillance in our hospital from 2022 Q1 to 2023 Q2. The main sampling sources were respiratory, blood, and urine-based, and the main clinical infections were respiratory and genitourinary in nature. Specimens were inoculated and cultured; bacterial strains were isolated using a VITEK® 2 Compact 60-card automatic microorganism identifier (bioMerieux, Paris, France) and their matching identification cards were identified, and manual tests were supplemented for strain identification. The most common Gram-positive bacteria detected were Staphylococcus aureus, followed by Enterococcus faecalis (E. faecalis), Staphylococcus epidermidis (S. epidermidis), and Staphylococcus haemolyticus (S. haemolyticus). The most common Gram-negative bacteria detected were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most prevalent multidrug-resistant bacteria were those producing extended-spectrum beta-lactamases, followed by methicillin-resistant Staphylococcus aureus, followed by carbapenem-resistant Enterobacterales. This study suggests that the prevention and control of infections in the respiratory and genitourinary systems should be the focus of anti-infective work and that the use of antimicrobials should be reduced and regulated to prevent the emergence and spread of resistant bacteria.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Departamentos Hospitalares , China/epidemiologia , Escherichia coli
20.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543478

RESUMO

The spread of antimicrobial resistant Campylobacter strains, linked to antimicrobials use and abuse in humans and food animals, has become a global public health problem. In this study, we determine the prevalence of antimicrobial resistance (AMR) in human Campylobacter isolates (n = 820) collected in Piedmont, Italy, from March 2020 to July 2023. The strains underwent susceptibility testing to determine the minimal inhibitory concentration for erythromycin, ciprofloxacin, gentamicin, streptomycin, and tetracycline: 80.1% of the strains showed resistance to at least one antibiotic. The highest prevalence of AMR was noted for ciprofloxacin and tetracycline (72.1% and 52.9%, respectively) and the lowest for erythromycin and aminoglycosides (streptomycin/gentamicin) (3.2% and 5.4%, respectively). The prevalence of co-resistance against fluoroquinolones and tetracyclines was 41.1%. The prevalence of multidrug resistant strains was 5.7%. Our data support evidence that AMR in human Campylobacter strains is common, particularly against ciprofloxacin and tetracycline, two medically important antimicrobials for humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...